Partial Exam

Mathematical Methods of Bioengineering Ingenería Biomédica

20 of March 2019

The maximum time to make the exam is 2 hours. You are allowed to use a calculator and two sheets with annotations.

Problems

1. (2 points) Find the equation of a plane that contains the line $l(t)=(-1,1,2)+t(3,2,4)$ and is perpendicular to the plane $2 x+y-3 z+4=0$.

Note: Two planes are perpendicular when their normal vector are.

SOLUTION

Let π be our plane. Because π is perpendicular to the plane $2 x+y-3 z+4=0$, his normal $(2,1,-3)$ must lie on π. Because the line $l(t)$ is on the plane his director vector must lie on π. Then we have that $(2,1,-3)$ and $(3,2,4)$ lies on the plane so $n=(2,1,-3) \times(3,2,4)=$ $(10,-17,1)$ is a normal vector of the plane π. Looking at $l(t)$ a point on the plane is $(-1,1,2)$. So π is

$$
10(x+1)-17(y-1)+(z-2)=0
$$

or

$$
10 x-17 y+z+25=0
$$

2. The three-dimensional heat equation is the partial differential equation

$$
k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right)=\frac{\partial T}{\partial t}
$$

(a) (1 point) First we examine a simplified version of the heat equation. Consider a straight wire modelled by x. Then the temperature $T(x, t)$ at time t and position x along the wire is modelled by the one-dimensional heat equation

$$
k \frac{\partial^{2} T}{\partial x^{2}}=\frac{\partial T}{\partial t}
$$

Show that the function $T(x, t)=e^{-k t} \cos x$ satisfies this equation. What happens to the temperature of the wire after a long period of time?
(b) (1 point) Now show that $T(x, y, z, t)=e^{-k t}(\cos x+\cos y+\cos z)$ satisfies the threedimensional heat equation.

SOLUTION

(a) $\cdot \frac{\partial T}{\partial x}=-e^{-k t} \sin x \Longrightarrow \frac{\partial^{2} T}{\partial x^{2}}=-e^{-k t} \cos x$

- $\frac{\partial T}{\partial t}=-k e^{-k t} \cos x$

Then, $k \frac{\partial^{2} T}{\partial x^{2}}=k\left(-e^{-k t} \cos x\right)=\frac{\partial T}{\partial t}$.
After a long period of time, the temperatures goes to zero because the negative exponential function of the time.

- $\frac{\partial^{2} T}{\partial x^{2}}=-e^{-k t} \cos x$
- $\frac{\partial^{2} T}{\partial y^{2}}=-e^{-k t} \cos y$
- $\frac{\partial^{2} T}{\partial z^{2}}=-e^{-k t} \cos z$
- $\frac{\partial T}{\partial t}=-k e^{-k t}(\cos x+\cos y+\cos z)$

Then, $k\left(-e^{-k t} \cos x-e^{-k t} \cos y-e^{-k t} \cos z\right)=-k e^{-k t}(\cos x+\cos y+\cos z)$
3. A bioinvestigation laboratory works with cells whose surface are represented in the next figure.

Figure 1: Cell.

While proceeding with the experiment, an unexpected incident disturbs the pressure in the essay area. The pressure at each point of the space is now given by the function

$$
T(x, y, z)=x y+x z+y z
$$

(a) (2 points) Suppose you can model the surface of each of the cells with the following equation:

$$
\mathbf{x}(s, t) \equiv\left\{\begin{array}{l}
x(s, t)=1.5 \sin s \sin t+0.05 \cos 20 t \\
y(s, t)=1.5 \cos s \sin t+0.05 \cos 20 s, \\
z(s, t)=\cos t
\end{array} \quad t, s \in[-\pi, \pi]\right.
$$

Compute the variation of the pressure on the surface when $s=\frac{\pi}{2}$ and $t=\frac{\pi}{2}$.
(b) (1 point) Suppose a microorganism is at the point $(-1,0,0)$. In which direction should the cell move in order to keep pressure constant? Explain your answer.

SOLUTION

(a) Using the chain rule

- On one hand,

$$
\begin{aligned}
& \frac{\partial T}{\partial s}=\frac{\partial T}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial T}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial s} \\
& =(y+z) \cdot 1.5 \cos s \sin t+(x+z) \cdot(-1.5 \sin s \sin t-\sin 20 s)+(x+y) \cdot 0 \\
& =(1.5 \cos s \sin t+0.05 \cos 20 s+\cos t) \cdot(1.5 \cos s \sin t)+ \\
& \quad+(1.5 \sin s \sin t+0.05 \cos 20 t+\cos t) \cdot(-1.5 \sin s \sin t-\sin 20 s)
\end{aligned}
$$

- On the other hand,

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=\frac{\partial T}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial T}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial T}{\partial z} \frac{\partial z}{\partial t} \\
& =(y+z) \cdot(1.5 \cos t \sin s-\sin 20 t)+(x+z) \cdot(1.5 \cos s \cos t)+(x+y) \cdot(-\sin t) \\
& =(1.5 \cos s \sin t+0.05 \cos 20 s+\cos t) \cdot(1.5 \cos t \sin s-\sin 20 t) \\
& +(1.5 \sin s \sin t+0.05 \cos 20 t+\cos t) \cdot(1.5 \cos s \cos t) \\
& +(1.5 \sin s \sin t+0.05 \cos 20 t+1.5 \cos s \sin t+0.05 \cos 20 s) \cdot(-\sin t)
\end{aligned}
$$

Using that $\cos \pi / 2=\sin (20 \pi / 2)=0, \sin \pi / 2=\cos (20 \pi / 2)=1$ we have,

$$
\begin{aligned}
& \left.\frac{\partial T}{\partial s}\right|_{s=\pi / 2, t=\pi / 2}=-2.325 \\
& \left.\frac{\partial T}{\partial t}\right|_{s=\pi / 2, t=\pi / 2}=-1.6
\end{aligned}
$$

(b) We compute the gradient of the temperature function at the point

$$
\begin{aligned}
\nabla T & =\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right)=(y+z, x+z, x+y) \\
\nabla T(-1,0,0) & =(0,-1,-1)
\end{aligned}
$$

Then we are looking for a direction \mathbf{u} such that

$$
D_{\mathbf{u}} T(-1,0,0)=\nabla T(-1,0,0) \cdot \mathbf{u}=(0,-1,-1) \cdot \mathbf{u}=0
$$

This defines a plane of directions $\pi:\left\{\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}: u_{2}+u_{3}=0\right\}$. Then any direction contained in the plain works, for example, $(0,-1,1)$ or $(0,1,-1)$.
4. A laboratory is working in a nanotechnology experiment that is trying to model a new prototype of carbon nanotube as shown in figure 2 . The surface in nanometers (nm) is given by the equation

$$
z=2\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}
$$

(a) (1 point) Find the critical points of the nanotube.
(b) (1 point) Is the origin a minimum/maximum? Explain your answer.
(c) (1 point) Write the equation in cylindrical coordinates. Which variables appear on the equation? Does the equation represent the same figure when $\theta=0$ and $\theta=\pi / 2$?

Figure 2: Representation of the prototype.

SOLUTION

(a) We need to find the points where $\nabla f(x, y)=(0,0)$. So,

$$
\begin{aligned}
& \nabla f(x, y)=2\left(2 x e^{-x^{2}-y^{2}}-2 x e^{-x^{2}-y^{2}}\left(x^{2}+y^{2}\right), 2 y e^{-x^{2}-y^{2}}-2 y e^{-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)\right) \\
& \nabla f(x, y)=2 e^{-x^{2}-y^{2}}\left(2 x-2 x\left(x^{2}+y^{2}\right), 2 y-2 y\left(x^{2}+y^{2}\right)\right) \\
& \nabla f(x, y)=4 e^{-x^{2}-y^{2}}\left(x\left(1-x^{2}-y^{2}\right), y\left(1-x^{2}-y^{2}\right)\right)
\end{aligned}
$$

Then, $\nabla f(x, y)=(0,0) \Longleftrightarrow(x, y)=(0,0)$ or $x^{2}+y^{2}=1$. In set notation,

$$
C=\{(0,0)\} \cup\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

(b) We compute the Hessian matrix in order to see if the origin is an extrema.

$$
\begin{gathered}
H_{f}(x, y)=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)= \\
4 e^{-x^{2}-y^{2}}\left[\begin{array}{cc}
-2 x^{2}\left(1-x^{2}-y^{2}\right)+\left(1-3 x^{2}-y^{2}\right) & -2 x y\left(2-x^{2}-y^{2}\right) \\
-2 x y\left(2-x^{2}-y^{2}\right) & -2 y^{2}\left(1-x^{2}-y^{2}\right)+\left(1-x^{2}-3 y^{2}\right)
\end{array}\right]
\end{gathered}
$$

At the origin we get,

$$
H_{f}(0,0)=4\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \geq 0
$$

The matrix es positive definite so the origin is a minimum.
(c) Using that $r^{2}=x^{2}+y^{2}$, tthe equation is written as

$$
z=2 r^{2} e^{-r^{2}}
$$

The variables who appear in the equation are z and r. The equation doesn't depend on θ so then for any fixed angle the figure will be the same.

